Screening Phosphorylation Site Mutations in Yeast Acetyl-CoA Carboxylase Using Malonyl-CoA Sensor to Improve Malonyl-CoA-Derived Product

نویسندگان

  • Xiaoxu Chen
  • Xiaoyu Yang
  • Yu Shen
  • Jin Hou
  • Xiaoming Bao
چکیده

Malonyl-coenzyme A (malonyl-CoA) is a critical precursor for the biosynthesis of a variety of biochemicals. It is synthesized by the catalysis of acetyl-CoA carboxylase (Acc1p), which was demonstrated to be deactivated by the phosphorylation of Snf1 protein kinase in yeast. In this study, we designed a synthetic malonyl-CoA biosensor and used it to screen phosphorylation site mutations of Acc1p in Saccharomyces cerevisiae. Thirteen phosphorylation sites were mutated, and a combination of three site mutations in Acc1p, S686A, S659A, and S1157A, was found to increase malonyl-CoA availability. ACC1S686AS659AS1157A expression also improved the production of 3-hydroxypropionic acid, a malonyl-CoA-derived chemical, compared to both wild type and the previously reported ACC1S659AS1157A mutation. This mutation will also be beneficial for other malonyl-CoA-derived products.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Production of Malonyl Coenzyme A-Derived Metabolites by Abolishing Snf1-Dependent Regulation of Acc1

ABSTRACT Acetyl coenzyme A (acetyl-CoA) carboxylase (ACCase) plays a central role in carbon metabolism and has been the site of action for the development of therapeutics or herbicides, as its product, malonyl-CoA, is a precursor for production of fatty acids and other compounds. Control of Acc1 activity in the yeast Saccharomyces cerevisiae occurs mainly at two levels, i.e., regulation of tran...

متن کامل

Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator.

Engineering metabolic biosynthetic pathways has enabled the microbial production of many useful chemicals. However, pathway productivities and yields are often limited by metabolic imbalances. Synthetic regulatory circuits have been shown to be able to balance engineered pathways, improving titers and productivities. Here we developed a negative feedback regulatory circuit based on a malonyl-Co...

متن کامل

Development of a Synthetic Malonyl-CoA Sensor in Saccharomyces cerevisiae for Intracellular Metabolite Monitoring and Genetic Screening.

Genetic sensors capable of converting key metabolite levels to fluorescence signals enable the monitoring of intracellular compound concentrations in living cells, and emerge as an efficient tool in high-throughput genetic screening. However, the development of genetic sensors in yeasts lags far behind their development in bacteria. Here we report the design of a malonyl-CoA sensor in Saccharom...

متن کامل

Acetyl coenzyme A carboxylase. IV. Biotinyl prosthetic group-independent malonyl coenzyme A decarboxylation and carbosyl transfer: generalization to other biotin enzymes.

Liver acetyl-CoA carboxylase, a biotin-enzyme which catalyzes the ATP-dependent carboxylation of acetyl-CoA (acceptor) to form malonyl-CoA (carboxylated acceptor), decarboxylates malonyl-CoA by a biotin-dependent, as well as a biotin-independent mechanism. Neither ADP, Pi, nor divalent metal ion are required for either of these abortive decarboxylations. The biotin-dependent reaction is blocked...

متن کامل

Insulin Resistance: Molecular Mechanism

Insulin resistance in skeletal muscle is present in humans with type 2 diabetes (non-insulin dependent diabetes mellitus) and obesity and in rodents with these disorders. Malonyl CoA is a regulator of carnitine palmitoyl transferase l (CAP I), the enzyme that controls the transfer of long chain fatty acyl CoA into mitochondria, where it is oxidized. In rat skeletal muscle, the formation of malo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018